Downloadable 3D Paper models

Check back often.
 Not every release will get an announcement

Bell XV-15

The Bell XV-15 is an American tiltrotor VTOL aircraft. It was the second successful experimental tiltrotor aircraft and the first to demonstrate the concept's high speed performance relative to conventional helicopters.

One of the major problems with the early tiltrotor aircraft designs was that the driveshafts carrying power from the fuselage out to the wingtip rotors, along with the gearbox and tilting mechanisms at the wingtips, had substantial loads placed upon them and were heavy. They were transferring large amounts of power and torque long distances for an aircraft power transmission system.

The XV-15 experimental aircraft introduced a major design concept advance: instead of engines in the fuselage, the XV-15 moved the engines out to the rotating wingtip pods, directly coupled to the rotors. The normal path for power was directly from the engine into a speed-reduction gearbox and into the rotor/propeller without any long shafts involved. There was still a driveshaft along the wings for emergency use to transfer power to the opposite rotor in case of engine failure, but that shaft did not normally carry any power loads, making it lighter.

What was to become the XV-15 program was launched in 1971 at NASA Ames Research Center. After preliminary work, a competition was held to award two $0.5 million research and development contracts for prototype designs. Companies that responded included Sikorsky Aircraft Corporation, Grumman Aircraft, Boeing Vertol, and Bell Helicopter.

R&D contracts were issued to Bell Helicopter and Boeing-Vertol on 20 October 1972. The two companies' design proposals were delivered on 22 January 1973.

Boeing proposed a design, Model 222 (not to be confused with the later Bell 222 conventional helicopter), in which the engines were in fixed pods at the end of each wing, and a small, rotating pod with the rotor was slightly closer to the fuselage on the wing. This design simplified the engine design by keeping it horizontal at all times without having very long driveshafts to the tilting rotors.

In the Bell design, Bell Model 301, the whole wingtip pod rotated between horizontal and vertical, with the engine and rotor assembly fixed together within the pod. This simplified the power transmission, but it had more complicated requirements for the engine design and was probably slightly heavier than the Boeing proposal.

After a review of both proposals, NASA selected the Bell 301 for further development, and a contract for further R&D was issued on 31 July 1973. Extensive engineering and testing took the next four years to complete the development of the aircraft. The first of two Bell XV-15s, tail number N702NA, first flew on 3 May 1977. After minimal flight tests at the Bell test facility, the aircraft was moved to Ames Research Center in Mountain View, California, where it was then mounted in the large Ames wind tunnel and tested extensively in various simulated flight environments.

For the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program, Bell Helicopter and Boeing Vertol teamed to submit a bid for an enlarged version of the XV-15 in 1983. The Bell Boeing team received a preliminary design contract that year, which led to the Bell Boeing V-22 Osprey.

Model Scale 1:42



US Coast Guard